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Abstract

A one-dimensional model for ice accretion due to incoming supercooled water impacting on a conducting substrate is developed,
where the substrate is cooled from below by a liquid or gas. Both rime and glaze ice situations are considered. Non-dimensionalisation
shows that conduction is the dominant method of heat transfer and so the heat equations are reduced to pseudo-steady forms. In this
case the problem reduces to solving a single equation for the ice layer thickness. The water height and temperatures in the ice, water and
substrate may subsequently be found. The asymptotic solution is validated by comparison with results from a numerical scheme which
solves the full Stefan problem. This is an extension of a previously published solution method that involved simpler boundary conditions.
For glaze ice, a comparison including water droplet energy either in the boundary conditions or as a source term in the heat equations, is
also performed.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Ice accretion on structures, aircraft, ships and refrigera-
tion equipment is a problem that has plagued engineers for
many years [1,2]. Consequently there are numerous, com-
plex models for the icing process. These typically involve
modelling the surrounding air flow field, water droplet tra-
jectories and then the actual accretion process. All three
components are coupled. However, the key to all icing
models is implementing the correct basic energy balance.
It is this balance that forms the backbone of all current
icing models and this is the subject of the current paper.

The seminal work on ice accretion was carried out by
Stefan in the 1800s, see [3] for a comprehensive review of
ice accretion modelling. In the aircraft industry possibly
the most important work of this nature is the one-dimen-
sional equilibrium energy balance of Messinger [4]. This
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model describes the basic balance employed in most cur-
rent commercial icing models (not just in the aircraft indus-
try). However, it has a number of drawbacks and in fact
will always lead to a slower rate of ice accretion than occurs
in practice [5]. The error will increase as the ambient tem-
perature increases and hence it is at its worst in mild con-
ditions. Unfortunately it is in mild conditions that ice
accretion is most unpredictable. In this case there is often
a significant water layer on top of the ice which may flow
and consequently lead to ice appearing away from an
impingement zone. Gent et al. [1] point out that icing mod-
els can now only progress significantly if the Messinger
based models are replaced by more realistic ones.

In a series of papers Myers and co-workers have devel-
oped models for ice accretion with water flow due to super-
cooled water impacting on a cold surface [5–8]. The models
have been tested against experimental results and are cur-
rently employed in a commercial three-dimensional aircraft
icing code, ICECREMO, see [1,9] for example. Initially the
work deals with the one-dimensional model, attempting
to remove the deficiencies of the Messinger model [5,6].
This one-dimensional model has subsequently been used
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Nomenclature

b ice layer thickness
c specific heat capacity
e(T) � e0T saturation vapour pressure
H convective heat transfer coefficient
h water layer thickness
k thermal conductivity
L substrate height
Lf latent heat of freezing
_m incoming water mass flux (normalised by area)
q sum of energy source or sink terms
Q energy source or sink terms
r local recovery factor
S Stefan number
t time variable
T temperature in ice
Tsubscript constant temperature for region denoted with

subscript below

w free stream air velocity
x spatial variable
b local collection efficiency
q density
h temperature in water layer
v temperature in substrate
ke evaporation coefficient
ks sublimation coefficient

Subscripts
a air above ice or water layer
A air beneath substrate
i ice layer or grid point index in numerical solu-

tion
k temporal index in numerical solution
s substrate
w water
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extensively in a series of papers by Naterer, see [10] and
references therein, in a study of structural icing. In [7] the
work is advanced to couple the one-dimensional model to
a water flow component. In Myers et al. [8] a model for
combined water flow and accretion on an arbitrary shaped
substrate is described, the application to practical situa-
tions is detailed in [11].

As mentioned, this hierarchy of models was constructed
as part of a program to develop a commercial code. Due to
the time constraints and the specific nature of the investiga-
tion a number of questions and extensions related to the
one-dimensional model were not investigated. These will
be considered in the current paper.

Firstly, in the one-dimensional model of [5,6] heat equa-
tions were defined in the ice and water layers, subject to
either a fixed temperature substrate or a cooling condition.
The equations and boundary conditions were non-dimen-
sionalised to highlight the dominant terms. This demon-
strated that the time derivatives in the two heat equations
were negligible. Taking the coefficients of the time deriva-
tives as small parameters an asymptotic expansion then
led to a leading order problem which was pseudo-steady,
i.e. time enters only through the boundary conditions, see
[12] for other examples where pseudo-steady models are
employed. Physically this means that the ice accretion rate
is significantly slower than the heat conduction rate. In
general asymptotic approximations can provide excellent
solutions, however there may be problems in applying
appropriate boundary, or in this case initial conditions.
When conditions cannot be applied it is termed a singular
perturbation, see [13] for example. In the model of [5,6]
neglecting the time-derivative in the leading order equation
meant that the initial condition could not be applied. The
effect of this was never investigated. In the following we
will use a similar asymptotic expansion but will also com-
pare it with a full numerical scheme to validate solutions
for all times.

Secondly, since the model was part of the initial phase of
the aircraft icing program, anti- and de-icing techniques
were not considered. However, Gent et al. [1] point out that
understanding ice formation is only a pre-requisite to
understanding its removal and thus developing an anti or
de-icing system. The ability to model heat flow through
the substrate is therefore an essential step in this process.
To do this we must extend the previous model to deal with
heat flow in three regions, namely ice, water and substrate,
and these are coupled at two boundaries. This will make
the model significantly more complex than that described
in [6,7]. However, it will not only provide a basis for mod-
elling certain types of ice protection systems, but will also
permit the prediction of ice formation above cold spots.
Cold spots occur, for example, when an aircraft flies
through a cold region causing the fuel to cool down. When
the plane flies into a warmer region anti-icing may no
longer seem appropriate but the cold fuel may extract
warmth from the surface and cool it below freezing.

Finally, when glaze ice is forming, there is a layer of
water on top of the ice. The layer is cooled at its top surface
by the free stream air flow and it is constantly fed by
incoming water droplets. In the original model all the
energy source and sink terms experienced by the water were
applied at the top surface. In reality some of the energy
terms should be applied within the film. For example the
water droplets are at a different temperature to the film.
When they impact they will pierce the film and mix with
it. Their energy will thus be imparted throughout the film,
not just at the surface. Similarly with their kinetic energy.
Naterer [10] states that the droplet kinetic energy will be
distributed throughout the film as the droplets pass
through. However, he was unable to incorporate the



1696 T.W. Brakel et al. / International Journal of Heat and Mass Transfer 50 (2007) 1694–1705
appropriate modification into the model and so adapted
the model of [6,7] to include the kinetic energy in the Stefan
condition, i.e. all of the droplet kinetic energy is imparted
at the ice interface. The droplet temperature (or sensible
heat) was still applied at the air–water boundary.

It is possible that, since the film is thin, applying all of
the energy terms at the boundary is a reasonable approxi-
mation. Effectively this means we are linearising the bound-
ary condition, based on the thinness of the region.
However, the validity of this approach has not been inves-
tigated. Naterer [10] mentions carrying out a sensitivity
study which shows that adding kinetic energy to the Stefan
condition does not greatly affect the ice growth rate. How-
ever, it is not stated under what conditions this study was
carried out and obviously the conclusion does not apply
to adding both the droplet heat and kinetic energy within
the film. A study of this issue will be carried out in Sections
3.2.1 and 3.2.2.

In the following Section 2, we will describe the mathe-
matical model. Non-dimensionalisation will then be used
to identify small parameters and therefore how to proceed
with the asymptotic expansion. The leading order solution
will be examined in Section 3. The full numerical solution
will then be described in Section 4. In Section 5 the asymp-
totic results will be compared with the numerics, under
conditions appropriate to structural and aircraft icing, to
verify the accuracy of the asymptotic solutions.

2. One-dimensional thermal analysis

Consider a situation where supercooled water droplets
impact on a thin conducting surface at a rate _m. If the sur-
face is below the freezing temperature the droplets will
freeze almost instantaneously to form a rime ice layer. In
mild temperatures or in the presence of a sufficiently thick
ice layer, a water layer may subsequently appear and glaze
ice will then form. This is depicted in Fig. 1. The tempera-
tures in the substrate, ice and water are denoted with
v(x, t), T(x, t), h(x, t) respectively, and the thicknesses of
the three layers are L, b(t), h(t). In the following analysis
we will assume that when glaze ice forms all of the energy
from the droplets is transmitted to the film at the free sur-
face. In Section 3.2.2 we will modify this to distribute the
energy through the film.
Fig. 1. Schematic of model problem.
In order to describe this situation mathematically heat
equations must be specified for each layer:

qscs

ov
ot
¼ ks

o
2v

ox2
; �L 6 x 6 0; ð1Þ

qici

oT
ot
¼ ki

o2T
ox2

; 0 6 x 6 b; ð2Þ

qwcw

oh
ot
¼ kw

o2h
ox2

; b 6 x 6 bþ h: ð3Þ

Eqs. (1)–(3) are solved subject to the following boundary
conditions. Underneath the substrate there is cooling due
to the flow of air at temperature TA:

ks

ov
ox
¼ H asðv� T AÞ; ð4Þ

where Has is the heat transfer coefficient at this interface.
At the substrate/ice interface, x = 0, heat flux is conserved:

ks
ov
ox
¼ H siðT � vÞ; ki

oT
ox
¼ H siðT � vÞ ð5Þ

where Hsi is the heat transfer coefficient between the ice and
substrate.

Under rime ice conditions there is no water layer. At the
top of the rime ice layer, heat energy is gained due to:
kinetic energy, aerodynamic heating and the latent heat
of freezing of the solidifying droplets. These are indepen-
dent of the relative temperature between the ice and drop-
lets, their sum is represented by Qi, where

Qi ¼
1

2
_mw2 þ rH aiw2

2ca

þ _mLf ;

where _m is the incoming mass flux per unit area of water, w

is the far field air velocity, r is the local recovery factor, ca is
the heat capacity of air, Hai is the heat transfer coefficient
between ice and air. Energy is lost to the surrounding air
(at temperature Ta) due to convective heat transfer and
sublimation, since the droplets are cooler than the ice, en-
ergy is also lost in heating them up to the ice surface
temperature

Ql ¼ ð _mcw þ kse0 þ H aiÞðT a � T Þ ¼ qlðT a � T Þ:

An energy balance then gives the boundary condition at the
top of the ice layer, x = b:

ki

oT
ox
¼ Qi þ qlðT a � T Þ: ð6Þ

If glaze ice is growing, Eq. (3) must also be solved, with the
following boundary conditions. At the ice/water interface,
x = b, the temperature will remain constant at the melting
temperature of ice Tf:

T ¼ h ¼ T f : ð7Þ

At the top of the water layer, energy is gained due to
kinetic energy and aerodynamic heating only:

Qw ¼
1

2
_mw2 þ rH aww2

2ca

: ð8Þ



Table 1
Properties of aluminium alloy, ice and water

cs 1250 J/kg K
ks 175 W/m K
qs 2710 kg/m3

Tf 273 K

ci 2050 J/kg K
ki 2.18 W/m K
qi 917 kg/m3

Lf 3.34 � 105 J/kg

cw 4218 J/kg K
kw 0.57 W/m K
qw 1000 kg/m3

ca 1014 J/kg K

Table 2
Physical parameters for structural and aircraft icing conditions

Structural

L 0.01 m _m 0.005 kg/m2 s
Hai 500 W/m2 K Haw 500 W/m2 K
Has 500 W/m2 K Hsi 1000 W/m2 K
w 5 m/s r 0.5
ks 9.3 m/s ke 8.2 m/s
e0 27.03 Pa/K

Aircraft

L 0.001 m _m 0.05 kg/m2 s
TA 260 K Ta 260 K
Hai 500 W/m2 K Haw 500 W/m2 K
Has 2000 W/m2 K Hsi 1000 W/m2 K
w 90 m/s r 0.895
ks 10.3 m/s ke 9.1 m/s
e0 27.03 Pa/K
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Energy is lost due to convective heat transfer, evaporation
and the thermal energy of the droplets:

Qm ¼ ð _mcw þ kee0 þ H awÞðT a � hÞ ¼ qmðT a � hÞ:

The boundary condition at the top of the water layer
x = b + h may therefore be written:

kw

oh
ox
¼ Qw þ qmðT a � hÞ: ð9Þ

In the model studied in Section 3.2.2 the kinetic and ther-
mal energy terms will be removed from Qw and Qm and
taken as source terms in the water heat equation.

The system (1)–(3) involves three unknown tempera-
tures and the two unknown thicknesses b and h. Closing
the system requires two more equations. The first is a mass
balance:

qi

ob
ot
þ qw

oh
ot
¼ _m: ð10Þ

When rime ice forms h should be set to zero in the above
equation and the system is closed subject to b(0) = 0. If
glaze ice forms then an energy balance, the standard Stefan
condition, must also be specified:

qiLf

ob
ot
¼ ki

oT
ox
� kw

oh
ox
: ð11Þ

This states that the energy required to make ice is the dif-
ference between the energy conducted away through the
water and ice layers.

We now proceed to non-dimensionalise the system in
order to define the dominant terms and therefore to sim-
plify the governing equations. The length scale chosen is
the width of the substrate. The time scale is proportional
to the water deposition rate _m, since this dictates the
growth rate of the ice layer. The temperature is scaled so
Ta corresponds to 0, and Tf corresponds to 1. The follow-
ing substitutions are therefore made to non-dimensionalise
the system:

x̂ ¼ x
L
; t̂ ¼ _m

qiL

� �
t; ðv̂; T̂ ; ĥÞ ¼ ðv; T ; hÞ � T a

DT
; ð12Þ

where DT = Tf � Ta and hats denote non-dimensional
quantities. For ease of notation we immediately drop the
hats. These substitutions give the following forms for the
heat equations:

o2v
ox2
¼ �s

ov
ot
; �1 6 x 6 0; ð13Þ

o
2T

ox2
¼ �i

oT
ot
; 0 6 x 6 b; ð14Þ

o
2h

ox2
¼ �w

oh
ot
; b 6 x 6 bþ h; ð15Þ

where

�s ¼
qscs _mL
qiks

; �i ¼
ciL _m

ki

; �w ¼
qwcw _mL

qikw

: ð16Þ
The mass and energy balances become

ob
ot
þ qw

qi

oh
ot
¼ 1; ð17Þ

S
ob
ot
¼ oT

ox
� kw

ki

oh
ox
; ð18Þ

where the Stefan number S ¼ _mLf L=kiDT and Eq. (18) is
evaluated at the interface x = b.

Boundary conditions (4)–(9) reduce to

vx ¼ c1vjx¼�1 þ c2; vx ¼ c3ðT � vÞjx¼0; ð19Þ
T x ¼ c4ðT � vÞjx¼0; T x ¼ c5 � c6T jx¼b; ð20Þ
T ðb; tÞ ¼ hðb; tÞ ¼ 1; hx ¼ c7 � c8hjx¼bþh; ð21Þ

where

c1 ¼
H asL

ks

; c2 ¼
H asL

ks

T a � T A

DT
; c3 ¼

H siL
ks

; c4 ¼
H siL

ki

;

c5 ¼
QiL

kiDT
; c6 ¼

qlL
ki

; c7 ¼
QwL

kwDT
; c8 ¼

qmL
kw

:

Material properties for the substrate, ice and water are
presented in Table 1. The properties for the substrate mate-
rial are those for a common aluminium alloy. Physical
parameters typical for aircraft and structural icing are
presented in Table 2. Under these conditions, �s = 0.001,
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�i = 0.047 and �w = 0.403, S = 3. Further information on
quantities such as the heat transfer coefficient and incom-
ing mass rate can be found in [8].

Since �s, �i� 1 the time derivatives in (1) and (2) are, in
general, negligible. �w is relatively large, however, it will be
shown later that a sufficiently thin water layer forms for the
time derivative in (3) to also be neglected. This is the same
approach that was employed in [6,7]. In general the results
will be accurate to within Oð�Þ, except for in the very initial
stages, t � �, when the time derivative may in fact be the
dominant term. In the case of �w the results will be signif-
icantly more accurate than Oð�wÞ, except possibly during
the initial stages. In the following section we will consider
the asymptotic solution where each � is treated as a small
parameter. We will then move onto a numerical solution
of the full equations to determine the validity of the
approximate solution.

In the following work our primary interest is in thin sub-
strates, such as the shell of an aircraft, or in situations
where the heating elements are placed close to the surface
and this motivates our choice of scaling, which in turn
determines the values of �. However, the analysis may be
valid for much thicker substrates depending on the mate-
rial parameters. For example, if the substrate is concrete
then �s� 1 requires L� 10 cm and we can work with sub-
strates of the order of centimetres thick. However, in this
case, �w � 1 and it appears that the approximation is inva-
lid in the water layer. The problem could be remedied by
choosing a different length-scale in the ice and water layers,
which in turn requires a different time-scale. To avoid this
confusion we stick with a single scaling throughout the
three layers and so restrict the analysis to relatively thin
layers.
3. Asymptotic solutions

3.1. Rime ice growth

Rime ice growth is the simplest case. The ice thickness is
determined by integrating Eq. (17) with h � 0, so b = t.
Since �i� �s (in fact �s � �2

i ), the temperature profiles take
the form

v ¼ v0 þ �iv1; T ¼ T 0 þ �iT 1:

The leading order heat equations are then

o2v0

ox2
¼ 0;

o2T 0

ox2
¼ 0: ð22Þ

These must be solved subject to the leading order boundary
conditions:

ov0

ox
¼ c1v0 þ c2jx¼�1; ð23Þ

ov0

ox
¼ c3ðT 0 � v0Þjx¼0;

oT 0

ox
¼ c4ðT 0 � v0Þjx¼0; ð24Þ

oT 0

ox
¼ c5 � c6T 0jx¼b: ð25Þ
At this stage the problem is clearly defined. The analytical
solution is simple although cumbersome and can easily be
dealt with by a standard computer algebra package such as
MAPLE.

The leading order temperature profiles are therefore

v0 ¼ a0 þ a1x; T 0 ¼ a2 þ a3x; ð26Þ

where

a0 ¼
c3c5ð1þ c1Þ � c2c4ð1þ bc6Þ � c2c6

c6ðc1 þ c3 þ c1c3 þ bc1c4Þ þ c1c4

;

a1 ¼
c3

c4

a3;

a2 ¼
c5ðc1 þ c3 þ c1c3Þ � c2c4ð1þ bc6Þ
c6ðc1 þ c3 þ c1c3 þ bc1c4Þ þ c1c4

;

a3 ¼
c4ðc1c5 þ c2c6Þ

c6ðc1 þ c3 þ c1c3 þ bc1c4Þ þ c1c4

:

Eqs. (26) are clearly linear in x but, due to the presence of
the moving boundary position, b(t), they are non-linear in
time.

The rime ice problem is now solved (at leading order).
The temperature profiles in the substrate and ice layers
are given by (26). The ice thickness is simply b = t. These
equations remain valid until water first appears (if it does
appear). This will occur when the ice surface, x = b,
reaches the melting temperature T(b) = 1. To determine
the thickness and hence the time at which this occurs we
substitute T = 1 and x = bw into (26). Rearranging the
expression leads to

bw ¼
c4ðc2 þ c1Þ � ðc1c3 þ c1 þ c3Þðc5 � c6Þ

c4c1ðc5 � c6Þ
: ð27Þ

In fact there are three possible scenarios that (27) tells us
about. In sufficiently cold conditions water will never ap-
pear, in this case Eq. (27) predicts a negative value for
bw. As conditions become milder water will appear at ice
thickness bw > 0. The transition between these two states
is manifested by bw ? ±1, i.e. when c5 = c6. In terms of
the physical variables this means when

T a ¼ T f �
Qi

ql

: ð28Þ

Since Qi represents the energy gain terms and ql represents
the energy loss terms this equation indicates that the ambi-
ent temperature at which water never appears decreases
with increasing energy terms, such as faster droplet impact.
If the energy loss terms increase, for example the incoming
droplets become colder, then Ta increases. Finally, water
will appear immediately when bw = 0 (within the level of
approximation used).

If bw = tw P 0 then a layer of water will appear at this
time, subsequently the glaze ice model must be employed.

The form of bw is shown in Fig. 2 for the situation where
TA = Ta. The two plots show results for aircraft and struc-
tural icing conditions. The values used are those given in
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Fig. 2. Time to appearance of water when Ta = TA for (left) structural
icing and (right) aircraft icing conditions.
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Table 2. The x-axis has been dimensionalised so the reader
can relate the air temperature to actual physical conditions.
The main difference is that glaze ice appears at lower tem-
peratures and over a wider temperature range under air-
craft conditions than structural icing.

Corresponding to the three scenarios discussed, three
regions appear in Fig. 2, they have been enumerated from
i to iii. Region i is where the air temperature is too cold for
water to ever appear, in this case when Ta < 270.8 K for
structural icing and Ta < 254 K for aircraft icing. As the
air temperature increases we move into region ii. Here,
water will appear after time tw = bw, indicating rime ice will
be present initially; and a water layer will appear after time
tw. Region iii occurs when conditions are warmer and the
theoretical time for water to appear is negative. This indi-
cates that the model assumption, that ice will always be
present, is incorrect and in this case water will appear first
with no ice.

The models described in [6–11] deal with a substrate
with a high thermal mass and hence employ a fixed temper-
ature condition at the substrate, T = Ts at x = 0. Substitut-
ing this for condition (24) and solving for the temperature
we find the appropriate expression for bw as bw = (1 � Ts)/
(c5 � c6). So, surprisingly the condition for the transition
from water appearing to no water is unaffected by the dif-
ferent condition, i.e. in both cases the transition is deter-
mined by (28). This means that to some extent the
transition is unaffected by the substrate temperature. How-
ever, this temperature does enter into the numerator of the
bw expression. For water to appear at some stage the
numerator must be positive. With the fixed substrate tem-
perature we require Ts < 1 (or in dimensional form
Ts < Tf). This means that ice can only appear if the sub-
strate is below the freezing temperature. In the present case
the situation is more complex, requiring the numerator of
(27) to be positive.
In Fig. 3 we show results for different values of the tem-
perature below the substrate, TA. Of particular interest are
the curves for the aircraft icing scenario. There we see that
with TA = 243 K, glaze ice can occur for external tempera-
tures greater than 270 K. In fact by decreasing TA we can
predict ice for Ta > Tf. This is precisely the situation where
ice forms above cold spots. When the temperature is rela-
tively high, TA = 272.5, ice will not occur unless the air
temperature is below 254.5 K. Similar qualitative results
are observed for the cable icing, but the variation occurs
over a much narrower temperature range.
3.2. Glaze ice growth

3.2.1. Droplet energy in boundary condition

If bw is positive (occurring in region ii of Fig. 2) the rime
ice model is no longer valid for b P bw (t P tw). In this case
the temperature profile in all three layers must be deter-
mined. Neglecting all terms of Oð�Þ, the leading order solu-
tion to Eqs. (13)–(15) are

v0 ¼ d0 þ d1x; T 0 ¼ d2 þ d3x; h0 ¼ d4 þ d5x: ð29Þ

Applying boundary conditions (19)–(21) leads to the fol-
lowing coefficients:

d0 ¼
c1c3 þ c3 � c2 � c4c2b
c1c3 þ c1 þ c1c4bþ c3

; d1 ¼
c3ðc1 þ c2Þ

c1c3 þ c1 þ c1c4bþ c3

;

d2 ¼
c1 þ c1c3 þ c3 � c4c2b
c1c3 þ c1 þ c1c4bþ c3

;

d3 ¼
c4

c3

d1 ¼
c4ðc1 þ c2Þ

c1c3 þ c1 þ c1c4bþ c3

;

d4 ¼
1� bc7 þ c8ðbþ hÞ

1þ c8h
; d5 ¼

c7 � c8

1þ c8h
:
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The coefficients di involve both the ice and water heights, b,
h, and are therefore non-linear in time. The temperature
profiles therefore require b and h to be determined. The
water height may be expressed as a function of the ice
height by integrating the mass conservation equation (17)
with respect to t. Applying h(tw) = 0 and b(tw) = tw the
water height may be written

h ¼ qi

qw

ðt � bÞ; t P tw: ð30Þ

This leaves the ice layer height b as the remaining un-
known. The rate of change of the ice layer height will be
governed by the temperature gradients at the ice/water
interface and the latent heat released, specified by the
Stefan condition. In non-dimensional form, the Stefan
condition is (at x = b)

S
ob
ot
¼ d3 �

kw

ki

d5: ð31Þ

The water height may be eliminated from the expressions
for d3 and d5 using (30). This leaves a non-linear equation
for b as a function of t as the only equation to be solved:

ob
ot
¼ S�1 c4ðc1 þ c2Þ

c1c3 þ c1 þ c1c4bþ c3

� kw

ki

ðc7 � c8Þ
ð1þ c8

qi

qw
ðt � bÞÞ

 !
:

ð32Þ

The numerical solution of this equation determines the ice
thickness which in turn may be used to determine the water
heights and then temperatures via (30) and (29).

3.2.2. Droplet energy as a source term

The above calculation is based on the energy carried by
the impinging droplets being released at the surface of the
liquid. As stated in Section 1 this is unlikely to occur in
reality. We will now modify the model so that the energy
carried by the droplets is released within the film. This
adjustment is made mathematically by adding two source
terms, one that depends on the droplet temperature and
one on the kinetic energy. The corresponding terms are
removed from the boundary conditions. The modified heat
equation becomes

�w

oh
ot
¼ o2h

ox2
� _mcwL

hkw

hþ _mw2L
2DTkwh

; b 6 x 6 ðbþ hÞ: ð33Þ

Note the sign change when non-dimensionalising the tem-
perature difference (Ta � h). Again, it is assumed that �w
can be neglected leaving the leading order asymptotic form
of (33)

o2h
ox2
� /2hþ c ¼ 0; b 6 x 6 bþ h; ð34Þ

where / ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _mcwLÞ=ðkwhÞ

p
and c ¼ ð _mw2LÞ=ð2DTkwhÞ.

This is a standard linear, constant coefficients equation,
with a constant forcing term and therefore has solutions
of the form e/x.
Boundary condition (9) is modified so that the net heat
transfer coefficient is given by

qM ¼ kee0 þ H aw:

The heating term becomes

Qw ¼
rH aww2

2ca

:

The temperature in the water layer is given by

h ¼ c

/2
þ e/ðx�b�hÞ½c8c� c7/

2 þ e�/hðc8 � /Þð/2 � cÞ	
/2½c8ðe�2/h � 1Þ � /ðe�2/h þ 1Þ	

þ e�/ðx�bþhÞðc7/
2 � c8cÞ þ e�/ðx�bÞðc8 þ /Þð/2 � cÞ

/2½c8ðe�2/h � 1Þ � /ðe�2/h þ 1Þ	
:

ð35Þ
The only remaining feature to modify is the Stefan condi-
tion, to determine the new growth rates. Differentiating
Eq. (35) with respect to x and evaluating at the ice/water
interface gives

oh
ox

����
x¼b

¼ ð/
2 � cÞ½e�2/hðc8 � /Þ þ ðc8 þ /Þ	

/ðc8ðe�2/h � 1Þ � /ðe�2/h þ 1ÞÞ : ð36Þ

Again, the height is eliminated from the Stefan condition
via (30). This leaves the single equation to be solved for
the ice height as

S
ob
ot
¼ d3 �

kw

ki

oh
ox

����
x¼b

; ð37Þ

where oh/ox is now a function of b, t only. This non-linear
ODE must be solved numerically.

For both cases, with droplet energy as a boundary con-
dition or source term, the problem has been reduced to
solving a single ODE for the ice height. Once b is known
then the water height may be calculated and consequently
the temperature profiles. Although the analytical expres-
sions are cumbersome this is still significantly simpler
than solving the full numerical problem. In the following
section we will detail the numerical scheme for the full
problem and then compare results to validate the analytical
expressions.

4. Numerical solution

In Section 4 an asymptotic solution was derived by
neglecting the time dependence in the substrate, ice and
water layers. This section is devoted to validating this
assumption. Linear temperature profiles were obtained that
depended only on the ice and water layer heights. The
asymptotic approximation is a simplification, but to be use-
ful must accurately approximate the solutions to the full
heat Eqs. (1)–(3). The numerical model that has been devel-
oped, handles both the rime and glaze ice cases. A similar
calculation has been performed by Gupta [14], using sim-
pler boundary conditions and an iterative approach to
determine the location of the solid/liquid interface.
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An semi-implicit finite difference scheme was developed
using standard methods found in Thomas’ work [15]. A
stationary grid was used for the substrate since its thickness
is constant. A moving grid was used for the time dependent
ice and water layers, derived from classic Stefan problems,
such as in [16,17].

The same substitutions were used to non-dimensionalise
all equations as in Section 3, but terms involving � were not
neglected.

4.1. Substrate equations

Inside the substrate, Eq. (13) may be integrated on a cell
of width Dxsub. Using a fully implicit scheme, this may be
written as

Dt
�sDx2

sub

vkþ1
iþ1 � 1þ 2Dt

�sDx2
sub

� �
vkþ1

i þ Dt
�sDx2

sub

vkþ1
i�1 ¼ �vk

i :

ð38Þ

The boundary condition underneath the substrate, at
x = �1, is determined in a similar fashion:

2Dt
�sDx2

sub

vkþ1
1 � 1þ 2Dt

�sDx2
sub

þ 2Dt
�sDxsub

c1

� �
vkþ1

0

¼ �vk
0 þ

2Dt
�sDxsub

c2: ð39Þ

The boundary condition at the top of the substrate in con-
tact with ice at x = 0 becomes

2Dt
�sDxsub

c3T kþ1
0 � 1þ 2Dt

�sDx2
sub

þ 2Dt
�sDxsub

c3

� �
vkþ1

nsub

þ 2Dt
�sDx2

sub

vkþ1
nsub�1 ¼ �vk

n: ð40Þ

Eq. (40) contains T0, which is the temperature of the ice
layer at x = 0, hence the substrate equation is coupled to
the ice equation.

4.2. Rime ice growth

The temperature profile in the ice is calculated on a
moving grid with a constant number of equally spaced
points. Since the height of the ice layer varies with time,
the size of the mesh cell is recalculated at each time step.
To account for this effect, a convection term is added to
Eq. (14). The time derivative is then replaced by the total
derivative. The governing equation, for example in the ice
layer, becomes

DT
Dt
¼ oT

ot
þ oT

ox
oxice

ot
¼ 1

�i

o2T
ox2
þ oT

ox
oxice

ot
: ð41Þ

where oxice/ot is the speed of the moving grid.
For rime ice, all of the incoming water droplets are

assumed to solidify. The ice growth rate is simply

ob
ot
¼ 1 or bkþ1 ¼ bk þ Dt: ð42Þ
The points within the ice layer are numbered from 0 at the
interface with the substrate and n at the interface with the
air. The two parameters oxice/ot and Dxkþ1

ice may then be
evaluated as

oxice

ot

����
iþ1=2

¼ iþ 1=2

nice

ob
ot
¼ iþ 1=2

nice

; Dxkþ1
ice ¼

bkþ1

nice

:

The numerical scheme inside the ice layer is then

Dt
�iDx2

ice

þ Dt
2Dxice

oxice

ot

����
iþ1=2

 !
T kþ1

iþ1

� 1þ 2Dt
�iDx2

ice

þ Dt
2Dxice

oxice

ot

����
iþ1=2

� oxice

ot

����
i�1=2

 !" #
T kþ1

i

þ Dt
�iDx2

ice

� Dt
2Dxice

oxice

ot

����
i�1=2

 !
T kþ1

i�1

¼ �T k
i :

ð43Þ

At the substrate/ice interface, boundary condition (20) at
x = 0, can be approximated by

T kþ1
1

2Dt
�iDx2

ice

þ Dt
2Dx

oxice

ot

����
1=2

 !

� T kþ1
0 1þ 2Dt

�iDx2
ice

þ 2Dtc4

�iDxice

þ Dt
2Dxice

oxice

ot

����
1=2

 !

þ vkþ1
nsub

2Dtc4

�iDxice

¼ �T k
0: ð44Þ

In this case, vnsub
is the temperature at the surface of the

substrate. The equations for the substrate and ice layer
are combined in the same matrix to ensure the algorithm
is fully implicit.

At the surface of the ice layer, x = b, boundary condi-
tion (20) becomes

� T kþ1
nice

1þ 2Dt
�iDx2

ice

þ 2Dtc6

�iDxice

� Dt
2Dxice

oxice

ot

����
nice�1=2

"

þ c6Dt
2

oxice

ot

����
nice

#
þ T kþ1

nice�1

2Dt
�iDx2

ice

� Dt
2Dx

oxice

ot

����
nice�1=2

 !

¼ �T k
nice
� 2Dtc5

�iDxice

� c5Dt
2

oxice

ot

����
nice

: ð45Þ

Solving for the temperature in the substrate and the rime
ice layer reduces then to inverting a single tri-diagonal ma-
trix. The numerical solution in the substrate and ice is given
by constructing a tri-diagonal matrix using the order
ðv0::vnsub

; T 0::T nice
Þ. The substrate equations are given by

(38)–(40) and the ice layer equations are given by (43)–
(45). The terms in the ice equations need to be updated
at each time step as the mesh is changing. Inverting this



1702 T.W. Brakel et al. / International Journal of Heat and Mass Transfer 50 (2007) 1694–1705
matrix completely solves the system for temperature in the
ice and substrate.

4.3. Glaze ice growth

The rime model is run until the surface temperature
exceeds unity (T = Tf = 1). Once T(b) P 1, the surface ice
temperature is truncated to unity and the calculation for
the water layer is activated.

At the top of the ice layer, heat flux boundary condition
(20) is changed to (21)a. This requires ensuring

T nice
¼ 1 and h0 ¼ 1: ð46Þ

The ice and water layer thicknesses are linked through the
speed of the growth rates, determined by the temperature
gradients at x = b, using the Stefan condition (18):

ob
ot
¼ S�1 oT

ox
� kw

ki

oh
ox

� �

¼ S�1
3� 4T k

nice�1 þ T k
nice�2

2Dxice

� kw

ki

�3þ 4hk
1 � hk

2

� �
2Dxwat

 !
:

ð47Þ

The change of the water layer height is then given by mass
conservation (17)

oh
ot
¼ qi

qw

1� ob
ot

� �
: ð48Þ

Since the water layer height is zero at t = tw, it is neces-
sary to either define a thin precursor water layer, or set
the temperature gradient of the water layer in (47) to be
very small. Either approach produces the same results,
but is required to start the solution, for the first time step
only.

The ice and water layer thicknesses can then be deter-
mined by

bkþ1 ¼ bk þ ob
ot

Dt; hkþ1 ¼ hk þ oh
ot

Dt: ð49Þ

The grid spacing and the two parameters oxice/ot and
oxwat/ot must be recalculated for each layer at every time
step,

Ice: Dxkþ1
ice ¼

bkþ1

nice

;
oxice

ot

����
iþ1=2

¼ iþ 1=2

nice

ob
ot
;

Water: Dxkþ1
wat ¼

hkþ1

nwat

;
oxwat

ot

����
iþ1=2

¼ iþ 1=2

nwat

oh
ot
:

The numerical schemes developed in the previous sections
inside the substrate and the ice layer remain valid. The
boundary condition at the top of the ice surface (45) only
is modified and replaced by the condition T nice

¼ 1. Inside
the water layer, the numerical scheme is derived similarly
as for the ice layer:
Dt
�wDx2

wat

þ Dt
2Dxwat

oxwat

ot

����
iþ1=2

 !
hkþ1

iþ1

� 1þ 2Dt
�wDx2

wat

þ Dt
2Dxwat

oxwat

ot

����
iþ1=2

� oxwat

ot

����
i�1=2

 !" #
hkþ1

i

þ Dt
�wDx2

wat

� Dt
2Dxwat

oxwat

ot

����
i�1=2

 !
hkþ1

i�1

¼ �hk
i : ð50Þ

At the top of the water layer, the flux boundary condition
(21) is given by

� hkþ1
nwat

1þ 2Dt
�wDx2

wat

þ 2Dtc8

�wDxwat

� Dt
2Dxwat

oxwat

ot

����
nwat�1=2

"

þ c8Dt
2

oxwat

ot

����
nwat

#
þ hkþ1

nwat�1

2Dt
�wDx2

wat

� Dt
2Dx

oxwat

ot

����
nwat�1=2

 !

¼ �hk
nwat
� 2Dtc7

�wDxwat

� c7Dt
2

oxwat

ot

����
nwat

: ð51Þ

Since the water layer temperatures are not directly coupled
to the ice layer, these equations can be solved in a separate
matrix. Solving the glaze ice case consists of constructing
and solving two systems of equations and is summarised
in Fig. 4. One matrix is required for the ice and substrate
with the constant temperature boundary condition (46);
and another matrix is required for the water layer using
Eqs. (50) and (51). Inverting these matrices will give the
complete temperature profile of the glaze ice system for
the current time step.

After Dt the ice and water growth rates are recalculated
using (47) and (48) with the recent temperature profile. The
next ice and water layer heights are then given by Eq. (49),
which can be used to formulate the substrate/ice and water
matrices. This may be repeated for the time interval of
interest.

5. Results

The most interesting results (and challenging to com-
pute) occur under glaze ice conditions, since we first see
rime ice and then a transition to glaze. From Fig. 2 we
can see the range of temperatures where glaze ice will
occur. In the subsequent calculations we take TA = Ta =
271.1 K and TA = Ta = 260.0 K for structural and aircraft
conditions respectively. These temperatures are at the high
end of the scale and should lead to a relatively thick water
layer.

5.1. Validation of the asymptotic model

For comparison purposes both the numerical and asymp-
totic models were solved until t = 4, which is approximately
2tw. Fig. 5 shows the height profile and temperature of glaze
on a substrate under structural icing conditions (when the
droplet thermal energy is included as a boundary condition).



Fig. 4. Summary of algorithm used in numerical solution.
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A total of 20 mesh points were used in the numerical solu-
tion with 1000 time steps. The solid lines are the asymptotic
results and the circles/dotted lines are the numerical values.
For both temperature and height the asymptotic profiles
agree to within 1% of the numerical values. This indicates
that the asymptotic model is valid for all time.

Fig. 6 shows corresponding results for calculations car-
ried out under aircraft icing conditions. Again good agree-
ment is shown between the asymptotic and numerical
solutions.

The time at which water forms, tw, was also compared (this
is where the graphs for height split). This is believed to be a
good comparison because it comprises the time dependence
and the heat distribution. The values for tw were within
3% for the aircraft case and 2% for the structural case.

Doubling the number of grid points or time steps in the
numerical solution did not change the results significantly.
Specifically, the time to water appearing varied by less than
0.1%.
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5.2. The effect of droplet energy

We now compare results where the droplet energy is
included in the boundary condition or as a source term.
In the previous subsection, the asymptotic and numerical
solutions were shown to be almost identical when the drop-
let energy is applied at the boundary. Our numerical stud-
ies have shown the same to be true when it is included as a
source term. The contrast of interest is therefore between
the different models themselves. The two asymptotic mod-
els are compared in Fig. 7 for typical structural icing con-
ditions, the source term model is plotted with solid lines
and the boundary condition model is in dotted lines/circles.
Clearly the temperature predictions are almost identical
throughout the calculation. The main difference being that
the ice height is slightly greater for the source term model.

In Fig. 8 the equivalent curves are shown under aircraft
icing conditions. In this case significant differences can be
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Fig. 7. Comparison of droplet energy models for structural icing.
observed. With the source term model the temperature in
the substrate and ice is lower than with the boundary con-
dition model. Consequently, the ice layer is significantly
thicker and water appears after a much longer time.

The obvious conclusion is then, at least for aircraft icing
conditions, that a source term model is the safest to apply
since the boundary condition model may underpredict the
ice thickness. For structural icing the difference is not so
crucial. Either model can therefore be safely used in this
case. Of course these conclusions are only valid for the
cases investigated during this study. In fact the two terms
that have been used as energy sources in the heat equation
have competing effects. Currently the cooling by the drop-
lets appears to dominate and so acts to decrease the water
layer temperature. However, it is possible that, if all other
terms are held constant, and the far field velocity increased
then the kinetic energy would increase sufficiently to dom-
inate over the droplet cooling and heat up the water, so
decreasing the ice layer thickness. But this scenario is really
only likely for aircraft icing.
6. Conclusions

The main objectives of this study were:

(a) To determine an asymptotic model for ice accretion
on a conducting substrate.

(b) To determine whether the asymptotic model in this
and previous studies is valid for small times.

(c) To determine whether applying the droplet energy
into the water layer has a significant effect on the
accretion model.

The asymptotic model, though algebraically awkward,
was successfully developed. Comparison of the asymptotic
and numerical models showed excellent agreement. The
obvious inference is that the asymptotic model in the
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present work and in previous simpler models, [6,5], are
valid for all time, despite the relatively large values of �w.

The question concerning droplet energy is more compli-
cated. Firstly, there are two competing effects: the droplet
kinetic energy increases the film temperature whereas the
droplet temperature reduces it. Under aircraft icing condi-
tions the droplets are very fast moving and so the kinetic
energy makes a significant contribution to the energy bal-
ance. However, the rate at which droplets impact is also
high so their temperature also contributes significantly. In
the simulations shown the result is that the ice grows more
rapidly if the energy is applied within the film. For struc-
tural icing the low velocities and rate at which mass accu-
mulates leads to little difference between the two models.
Consequently it appears that for structural icing there is lit-
tle to choose between the models. However, in general it
must be best to apply the energy term throughout the film
since this is probably the most realistic scenario and, under
certain conditions, it can lead to significantly increased ice
growth rates. Clearly, for safety reasons, it is important to
predict the upper limit for any accretion.
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